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A CLASS OF ‘IWO-PHASESTATE EQUATIONS

ABSTRACT

The properties of a particular class of elementary, two-phase

state equations are found to be simply related. The class includes

some familiar equations, such as the Van der Waals, Berthelot, and

Clausius types, as well as a form recently suggested by J. J. Martin.

Conditions for stable equilibrium are given, and some examples are

compared. A table of values is included which can be used with

elementary transformations to find the equilibrium coexistence

properties of any member of the set. A drawback for this t~e

equation along the critical isotherm is noted.
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1, INTRODUCTION

There exists a substantial number of elementary pressure state

equations which predict a liquid-vapor phase transition and a critical

point. It is the purpose of this paper to show that many of these,

though not all, belong to a single class, and that the various therm-

odynamicpredictions between class members are simply related. Some

familiar equations belong to this group, including the Van der

Waals-Maxwell, [v-M], equation, which will serve as the basis for

comparison. A direct method can be demonstrated relating the limiting

values of thermodynamic quantities in the critical region.

The fon’nof equation treated here is

P(V,T) = (RT/[V-b(T)]) -a(T) /[V+c(T)]2 (1)

where V ~ b (T) > - c(T), and T > O; P, V, and T are pressure, specific

volume and temperature, respectively. R is the gas constant, and a(T),

b(T) and c(T) are analytic functions of positive T. Some restrictions

are needed on the latter functions. For instance, b(T) is assumed to

be positive and larger than -c(T); and a(T) must be positive for all T

less than some value exceeding the critical temperature, TC, in order

to produce a critical point. It is shown in the Appendix that b(T)

must be a constant, which is henceforth assumed.

Eq. (1) is expressed in reduced form by use of the scaled

variables 6 ~ P/PC, Y ~ T/TC, I ~ l/~ ~ V/VC (this notation corresponds

to that of Reference [1], with subscript ~ denoting critical value) as

~(~,Y) = (l/zC) ((Y/[~-B]) - (9/@(Y)/Pl+@Y)]2] (2)

whereT~B>- C(y) andy> O, and ZC ~ PCVC/(RTc) is the critical com-

pressibility. The transformations from a, b, and c to A, B, and C are

(9/8) A(Y) =a(T)/[RT&], B=b/VC and C(y)=c(T)/VC. It follows that

A(y) is positive for a range of y larger than unity. The variables

9



~, Y, T and ~ all are unity at the critical point. It is seen that

Eq. (1) approximates the ideal gas equation when V becomes very large.

In order that the state of the system be stable, certain relations

must hold for the thermodynamic functions*. These are: Cv > 0, where

Cv is the specific heat at constant volume; and ()
ap
my

< 0, except at

the critical point. At the critical point, the conditions become

()
ap

“o= ()
32$

\~ y my “

Imposing these latter conditions at the critical point, one

obtains the relations:

Al = l+C1; ~ = (1/3)(1-2CI); and Z, = (3/8)/(1-+cI) (3)

where a subscript ~ on A, B, or C denotes the value at the critical.

temperature, y = 1. Thus, the function C(y) fixes the critical

compressibility,Zc.

ap
One observes that for Y < 1, there is a domain of (T,Y) where ~

from Eq. (2) is positive, contrary to the stability requirement.

Thus, Eq. (2) cannot represent a stable thermodynamic pressure function

in this domain; instead, the vapor pressure function, ~~(y)j independ-

ent of ~, replaces Eq. (2) as the pressure function here. The usual

method of defining b~(y) so it is continuous with the ~(q,y) of Eq. (2)

is by means of the Maxwell rule: for any fixed y $ 1,

h (Y)

j’ B(~,y)dT =~, (y)(T, (Y)- Ts(y)l,
%(Y)

(4)

with

m >Y) = B(ls,y) = 6A(Y) ●

*References are listed on page Z7.
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The quantities ~3(Y) and ~l(Y)

vapor loci, respectively. For

is the region where liquid and

are points on

any fixed y ~

vapor coexist

the saturated liquid and

1, the domain T3 ~ ~ ~ ~1

at the same pressurej

temperature, and chemical potential. The boundaries of the

region are also defined byEq. (4). The use of the Maxwell

implies that the Hel.mholtzfree energy is a unique analytic

coexistence

rule

function of

V and T where Eq. (1) is the proper pressure fu.nction3. With this

analyticity,Eq. (4) insures that the pressure and chemical potential

are continuous functions of V and T across the coexistence boundaries.

To avoid confusion, a subscript ~will hereafter be used on a thernm-

dynamic variable within the coexistence region, while a subscript ~

will refer to the value outside coexistence.

II. TRANSFORMliTIONS

For compactness, let

f(y) = 3[B+c(y)]/A(y) ● (5)

For y > 1,
a$
~must never be positive, or the stability requirement is

violated. FromEq. (2),

where

G(~,Y) = (9/4) A(Y)[1-By/(Y[?K]3) .

(6)

(7)

Since both ZC andy are positive, Eq. (6)

providing G(~,Y) is less than 1 for any ~

3
shows

+a is negative,

2 B. This latter condition

is easily satisfied when A(y) is negative; but A(y) was previously

required to be positive for all Y less than some value YO exceeding

one. In this range of y, i.e., (0 < Y < YO), G(~,Y) is positive and has

a maximum value with respect to ~, GM(Y), at ~ = 3B+2C(Y), where

11



GM(Y) = A(Y)/[3Y(B+C)1 = l/[yf(Y)]. (8)

Forcing Yf(y) > 1 for YO> Y > 1 will insure that
ap
#

is non-positive4

For y < 1, one wishes to satisfy Eq. (4) in the (T,Y) do~in of

coexistence.
P
~b T

The mathematical function ~ of Eq. (2) must there-

fore have zeros in this domain, so yf(y) < 1 for y < 1. At Y = 1,

yf(Y) is unity, as may be seen from the relations already given for

Y=lo

Defining

NY) = (3/8)/[% fvY)MY)l, (9)

and the transfo-tions

u(y) = Yf(Y), (lo)

v(~,y) = [~@y)l/[f(~)A(y)], (11)

W(V>Y) = i3(7,y)/x(Y), (12)

WA (y) (13)E $,(y)/x(y),

with the convention that w(llSY)has a subscript ~ when ~(~~Y) does~

one finds that Eq. (2) transforms into

w(v,U) =t8u/(3v-1)] ‘3/@ . (14)

Moreover, for any fixed u $ 1, Eq. (4) transforms into

VI(u)

~ w(v,u)dv =w,(u)(vl(u) -va(u)l

v~(u)

(15)

with W(vl,u) = w~(vl,u) = W(V3YU) = wB(v3su) = WA(U).

12



Eq. (14) has exactly the form of the reduced Van der Waals pressure

function, providing one interprets w, v, and u as reduced pressure,

volume, and temperature respectively. All the functions w~, WA, u, and

v, are unity at the critical point where T = 1 and Y = 1.

H

3UV
The Jacobian, J =

a Y,
of the transformations of the independent

variables y and ~ to the new independent variables u and v reduces to
av au
mm because u is independent of ~. Using Eqs. (10) and (11) this

Jacobian is

J = (My ~/ f(y))/A(y), (16)

and where J or J-l is neither zero nor infinite, the mapping is single

valued. It will be assumed in the further development that for y ~ 1

this mapping is single valued, so the necessary conditions on A(Y), B

and C(y) to accomplish this purpose will be assumed henceforth. The

thermodynamic properties of any state equation of this class for Y ~ 1

can now be expressed in terms of those corresponding properties known

for the [V-M] system, and the given transformationEqs. (10-13).

The method for finding the properties in the coexistence region,

including their limits at the critical point, is that demonstrated by

Barieaul. For fixed u $ 1, Eq. (14) becomes a cubic polynomial in v;

one finds from it the largest and smallest values of v (VI(U) and

v~(u), respectively)which simultaneously satisfy Eq. (15). Letting

5 ~ l/v, one then obtains, for u S 1,

‘A(%5%) = %s3(3-s3-51), (17)

W% ,?3) = (%%3)(3-%)(3-~3)*

Differentiating both sides of Eq. (15) by u results in the differential

equation:

(19)

13



similarly differentiatingEqs. (17) and (18), and using Eq. (17) gives

one

The relation

us= %(3-%)/(3-2%-%),

~ d?~
du

= ?3(3-53)/(3-2?3-71).

d2W
u+=

3 ::%53) ,

(20)

(21)

(22)

follows directly from Eq. (19). Eqs. (17-22) have the same form as

the corresponding ones of Reference [1] used to display properties of

the [V-M] fluid, providing wA> U, and ~ here are replaced by ~, Y, and

a to conform with the notation there.

Proceeding analogously, and defining y = 53 - 1 and x ~ 1 - ?l,

one can use Eqs. (14), (15), (17) and (18) to obtain y as a function of

x; this function can be expanded in the power series

w

Y= I aixl ,

i=l

(23)

where Barieaul finds al=l, ~=1/5, and a3=l/25. The value of a~ was

subsequently evaluated by the present author to be 19/350.

All quantities 51, 53, wA> etc., (as functions of u) have been

tabulated previously for the [V-M] system. They may be used to find

limiting thermodynamic values in the critical region for any equation

of the class considered here; a brief table is in the Appendix.

Some inverse transformations are

T, =1/% =VJ f(y) A(y) - C(Y), (j=l,3) (24)

14



BB(T,Y) =w~(v,u)x(y)

‘A(y) ‘WA(U)X(Y)

f+}, = ‘(y){ (~)u(~)~ + (~)v(~)~} + ‘B (VJU) ~

(a)}‘dwA U’ dx+wA(ll)~ “w= ‘(y) idu {~~.

From Eqs. (27) and (28), it can be seen that {5*}T is equal

d~,(l) be
dy

cause it is known from the Van der Waals function that

point (v,u) = (1,1): (a), w~ and WA are each equal to one; (b),

(M) ~~dw are each equal to four; (a )and (c), ,,#u is
du

(25)

(26)

(27)

(28)

to

at the

zero.

Therefore, for any equation of this class, the temperature derivative

of the vapor pressure function is continuous at the critical point with

that of the critical isometric, in reduced variables. This continuity

does not necessarily hold for higher order derivatives.

III EXAMPLES AND COMPARISONS

When A(y), B and C(y) are specified, one can recognize some

well-known state equations. Some examples are shown in Table I.

Example 6, with A(y) a linear function of y, comes from an equation

recently suggested by Martin**. When C(y) is a constant,

for all equations in Table I, one can use the definitions

the product f(y)X(y) is unity. In the following, certain

predictions for some of these examples will be compared.

A. Coexistence Boundary.

A comparison is

coexistence boundary

made in Figure 1 of the

for the state equations

as is true

to show that

thermodynamic

reduced density on the

numbered 2, 4, and 6 in

15
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Table 1. Example state equations and transformations

a. Shown in the form P(V,T) = [RT/(V-b)] - a(T)/(V+c)a, with

constants a~, bj and c~ for the number (j) equation. For all show

(except No. (l), where bothb and a(T) are zero), b~ =VC[l-1/(4ZC)]

and Cj = VC[-1+3/(8Z~]; n~ = (9/64)(RTc)2/PC.

,
No.
(J)
. Name P(V,T) ad z~

(1) Ideal Gas RT/V - Undefined-

(2) Van der Waals [RT/(V-k )l-~/~ 3% = 3/8

(3) (translated) [RT/(v-g) l-a3/(v+c3)2 3 n~ > 1/4
Van der Waals

(4) Berthelot [RT/(V-b.)]-%/(TV2 ) 3 rI’TC = 3/8

(5) Clausius [RT/(V-bs)]-~ /[T(V+CE)2 3 ~TC > 1/4

(6) Maxtin4(A) [RT/(V-be)]-~ (4 Tc-T)/(V+c6)2 ~ /T~ > 1/4

(7) Martin (B) [RT/(V-b,)]-w (5 TC-2T)/(V+Cv)2 nv/TC > 1/4

b. Same state equations (omitting No. (1)] in the reduced form

@ = (l/ZC)([Y/(~-B)l-(9/8)A(y@) 2), where @ = ‘/pCs

Y = T/T-c and ‘f) = T/Tco For all ShOWTIhe% B = 1 - 1/(%)>

c=- 1 + 3/(8zc) {independent of Y), and X(Y) = I/f(Y).

No.
(J)
.

ZCA(Y) z~ f(y) (*)c {= (y))
1
(2) 3/8 = 3/8 1 4

(3) 3/8 > 1/4 1 4

(4) 3/(8Y) = 3/8 y 7

(5) 3/(8Y) > 1/4 Y 7

(6) (4-y)/8 > 1/4 3/(4-Y) 5

(7) (5-2Y)/8 > 1/4 3/(5-2Y) 6

16
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Table I, using the given functions with Eq. (24); similar plots for

examples 3 and 5 of Table I can easily be obtained from those of 2 and

4 respectively, when the value of Cl is assigned.

B. Vapor Pressure, (Y s 1).

Eq. (26) gives the vapor pressure, ~~(y), as a function of wA(u),

the [V-M] vapor pressure at the reduced temperature u, and the specific

transforming function. These are shown in Figure 2. For state

equations having the same f(y) functions and the same X(Y) functions~

the vapor pressure is the same function of y. Thus, the state

equations numbered 2 and 3 in Table I have the same vapor pressure, as

do those numbered 4 and 5.

c. Heat of Vaporization.

For T < TC, the latent heat of vaporization AQA(T) is found by

using the Clapeyron relation, AQA(T) = T% [Vi(T) -V3(T)]; in

reduced variables this becomes

AQA(T)/[RTC] = Zc

U.I.

Y$@(Y) -V3(Y)I ●

Using the inverse transformations,

AQA(T)/[RTC] = rAQ,(T)/[RTC110{&)@(y)}

+ (uwA(u)[v~(u) - V3(U)II{ZCA*) (30)

where the first factor on the right is the latent heat of vaporization

for the [V-M] equation at the reduced temperate u. The functions

WA(U), m(u) and V3(U) are also lmown; as with the vapor pressure

function, the heat of vaporization is the same function of y for state

equations having the same f(y) and X(y). Comparisons are shown in

Figure 3; the values for the Berthelot and Clausius equations become

18
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unrealistically large at small y. Obviously, AQ~(T) vanishes at T = TC

for all equations. The entropy of vaporization, AS~(T)j is simply

computed from AQA(T) by using T AS~(T) = AQ~(T).

D. Specific Heat at Constant Volume, Cu.

With E(V,T) the internal energy for unit mass (here taken to be

the molar mass) the constant volume specific heat is CV(V,T) = ~~~ ,

()
ac” b2E

v

‘othatav, =~o
The form of Cv within coexistence is Cv~(V,T),

and it differs from that of the single phase, CV~(V,T). By

differentiatingthe thermodynamic relation

w,=T (~)v-p, (30

one obtains

above mixed

b2E
()
a=p

● using reduced variables and equating them=T ‘m”’

derivatives, one gets:

Performing a partial integration with respect to ~, one obtains

CVB(~,y)/R = @(Y)/R + YF(T,Y)

()
d

where, with a prime hereafter signifying
%’

(32)

(33)

I?(?,y) = ((9/8)/[We(y) ]3](A” [~+c(Y)]2 -[2A’C’+AC’’][T+C(Y)]

+ 2A(c’)2) . (34)

Here C;(T) is the specific heat of the single phase at very low density

(1 ‘my F(~~Y) ~ o]; for a monatomic vapor at nmderate temperature

C;(T) is 3R/2. Since Cv~ must always be positive in the single phase,



further restrictions are imposed on the permissible functions A(Y) and

c(y). It is for this reason that B is forced to be a constant rather

than a function of y, as shown in the Appendix. ?+= (~)y,Because ZC ~

from Eq. (34) one obtains,

z, ?+= {(g/8)/[ W(Y)14~(- A“ NW(Y) ]a + 2[W’C’+AC” ][~+c(y)]

- 6A(C’)21. (35)

If C’(y) and A’’(y)are

are identically zero in the

identically zero,

single phase.

then $$andF(T,Y)

Within coexistence, T $ TC, V3(T) ~ VI(T), the specific heat is

Cv~(V,T); it can be found by using EA(V5T) and P~(V,T) in Eq. (31),

integrating it at fixed T ~ Tc from VS(T) to some V within coexistence,

and differentiating the result by T. Both E~(V,T) and CV~(V,T) are

linear functions of V. Using the fact that the internal energy and

pressure functions are continuous across the boundary of coexistence,

one can obtain in reduced variables

k“, (V,T) - C~(T))/R = r(~,y), (36)

where

r(l,Y)W~ ‘(Y) {(~)q=~3- ~,‘(Y)} + YF(~s,Y)+~A’’(Y)[~-m3(Y)]. (37)

()af3,In general ~Y ~ is not equal to ~A ‘(y) at (h5y)5 ‘0 ‘he ConStat

volume specific heat exhibits a discontinuity across the coexistence

boundary.

Recalling that the ~~ are fwctions of U) one can use the inverse

transformations and arrange the terms to obtain:

22



r(~,Y) = (r(v,u))o\ (Y) + (3-?s )(&El )(% (Y)-(3-2%RI )k~(Y)) (38)

Here the kl are functions of y, and:

k3 = 3ZCX[C’]2/[#A]; ~ = AZC [Xu” + 2X’U’]

~ SAZCX”; andwithm = 53/[fA],

Fa(53,Y) = (9/8) m ~A”-[m’c’+Ac’~m + 2A[C’]2m2].

h(v,dlo is the corresponding quantity for the [V-M] system at the

point (v,u) inside coexistence. The value of r(~,y) at the critical

point is easily found because both ~ and ~1 become equal to 53 there,

and the second and third terms vanish. The critical value of

(r(l,l))d is Mown to be 4.5, and neither kl(y) nor F2(1,1) is infinite

there. Therefore, r(~,y) is always finite at the critical point, and

state equations of this class cannot show an infinite Cv~ here, as

suggested by some experimental data. Along the saturated liquid locus

(5=53), the third tem of Eq. (38) vanishes. When C‘ s O (as happens

for all example equations in Table I), Eq. (38) simplifies along the

saturated liquid locus, (~3,y), to:

r(~a,Y) = (r(v~JI))o(u’/f)2+(9/8) 53(U) {yA”/[fA]]. (39)

E. Vaporizing Signal Speed

The speed of a small amplitude adiabatic expansion wave (with

partial vaporization) propagating into the saturated liquid5 is denoted
w

by a~(V3,T), and is equal to V3 # (T/Cv~(v3,T)l~; in reduced notation,

23
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(40)

A comparison of these speeds is shown in Figure 4 for the sample

equations numbered 2, 4, and 6 in Table I, with the assumption that

c~/R 5S 3/2. The limiting values at the critical point for certain

coexistence properties of sample state equations are shown in Table II.

Iv. DISCUSSION

The predicted thermodynamic properties of coexistence for this

class of elementary state equations are seen to be conveniently done in

terms of the known [v-M] system. The use of different functions A(Y),

B and C(y), might improve the agreement between prediction and obser-

vation. However, this class of state equation contains one serious

drawback in the critical region which cannot be overcome by modifying

these functions. This defect is that this entire class predicts IP-PCI

to vary as the third power of IV-VCI on the critical isotherm; recent

data suggests that this exponent is larger than threeG, and perhaps as

large as five7. With this restriction, however, this class equation is

useful in giving a qualitative survey of some subcritical transition

properties of liquids and gases.



Table II. Critical point values for designated quantities
State equation numbers correspond to those
of Table I. Value of C! was assumed

3R/2 to compute last column.

Equation
No.

2

3

4

5

6

7

9

9

32

32

17

26

o

0

-6

-6

0

0

(%A-c;)/R
4

4

20

20

8

12

(Cv,-C;)/R a~/(RTC)$

o

0

2

2

0

0

.612

1.633

.563

1.622

1.871

25
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Figure 4. Vaporizing signal speed of the saturated liquid for
equations numbered in Table I. The curve shown for
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was used for C:.
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APPENDIX

I. Showin~ B must be Independent of v

If B were allowed to be a function of y, there would be additional

terms in Cv~(V,T) ofEq. (33). These extra terms wouldbe

- ((9/8)RY/(7-B))(2B’ +Y(B’)2/(~-B)).

Since 7 can approach B in the single phase of this fluid, the last term

would contribute a dominant negative value to Cv~(V,T), unless B’(y)

were identically zero. Because of the stability condition CV(V,T) > 0,

it is then necessary that B(Y) be a constant. Restrictions are also

required on A(y) and C(Y), but they are not as simple. With

x = l?l+C(Y)]-’, and the definitions L(y) ~2A’’(y), M(y) =2A’C’+ AC”

and N(y) ~ 2AC”, then Eq. (33) becomes

Cv8/R=C:/R+ (9/8) yX (L(y) - xM(y) +x?N(y)], (A-1)

where, for Y ~ 1, the permissible x

Otoxl= + [B + C(y)]-l < + ~; for

over a similar interval, excluding,

range over a positive interval from

y ~ 1, permissible values of x range

however, a sub-interval corres-

ponding to T values within the coexistence region. {For this sub-inter-

val, the proper expression for CV is Cv~, given byEq. (36)1. Eq. (A-1)

is a cubic polynomial in x, and can have a variety of shapes, depending

on the coefficients L(y), M(y) and N(y). The functions A(y) and B(y)

must be restricted so Cv is always positive. This requirement is

satisfied for all the example equations shown in Table I.

II. Reduced Variables for the [V-M] Fluid

The set of values given in Table III for the

used with the transformation equations to compare

29

[V-M] system can be

easily the sub-critical



Table III. Reduced values of coexistence temperature,
saturation densities, and vapor
pressure for the Van der Waals-

Maxwell state equation

u

1 ● 000

.998

.994

.990

.98

● 97

.96

● 95

● 93

.90

.85

.80

● 75

● 70

.65

.60

.55

.50

.45

.40

● 35

.30

.25

● 20

.15

● 10

.04
0.00

1.0000

1.0902

1.1571

1.2035

1.2894

L3558

1.4121

1.4617

1.5482

1.6573

L8071

1.9327

2.0424

2.1404

2.2296

2.3H6

2.3875

2.4585

2.5251

2.5879

2.6475

2.7042

2.7583

2.8012

2.8602

2.9083

2.9640

3.0000

51

1 ● 0000

.91140

.84773

.80454

.72669

.66844

.62042

.57901

.50931

.42574

.31973

.23967

.17721

.12802

.89475x10-1

.59778x10-1

.37580X10-1

.21747x10-1

.11217xlo-1

.49109X10-2

.16875X10-2

.39907X10-3

.51259x10-4

.22296x10-6

.41565x10-7

.21612x10-12

.56824X10-34

0.00

30

WA

1.0000

.99202

.97617

.96048

.92191

.88429

.84762

.81188

.74318

.64700

.50449

.38336

.28246

.PO046

.13584

.86869X10-1

.51580X10-1

.27789x10-1

.12134x10-1

.51745X10-2

.15673x10-2

.31882XIO-3

.34165x10-4

.H89U10-5

.43602x10-8

.57631_XIO-13

.60612x10-35

0.00



thermodynamic predictions for any state equation belonging to this

class. Five significant figures are given for every function except u,

which is assumed to be exact. These values were computed at this

laboratory with the assistance of D. C. Mylin and F. H. Macintosh. R.

Barieaul gives a much more extensive tabulation of various thermodynamic

properties for the [V-M] fluid for .25 ~ u ~ 1.0. For these U, the

above values agree with his tabulations.

Y
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